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Cawley's Counterexample to Dirac's Conjecture as a 
Curved Spacetime 

M. Carmeli  1'2 

Received September 10, 1986 

Cawley's counterexample Lagrangian to Dirac's conjecture on dynamical systems 
is modified to a line element in curved spacetime, and the energy-momentum 
tensor corresponding to such a spacetime is found. The spacetime obtained 
satisfies the Einstein field equations and describes a three-dimensional matter- 
filled universe. It is further shown that such a universe cannot be filled up with 
other sources, such as a perfect fluid, a scalar field, or an electromagnetic field, 
without violating the Einstein field equations. 

1. INTRODUCTION 

The ambiguity in the Hamiltonian for systems with constraints was 
discussed by Cawley (1979), who also gave a counterexample to a conjecture 
by Dirac (1950, 1958, 1964) for the identification of the Hamiltonian of the 
physical system. Subsequently, it was shown by Frenkel that Cawley's 
example still leaves open the possibility that Dirac's "test" always provides 
all the gauge generators, and an example in which both Dirac's conjecture 
and test fail was given by him (Frenkel, 1980; Cawley, 1980). Because of 
the great interest in the problem of constraints in classical dynamical 
systems, Dirac's theory and the counterexamples have drawn attention and 
stimulated much discussions in the literature (Dominici and Gomis, 1980; 
Hojman, 1980; Castellani, 1982; Kamimura, 1982; Sugano and Kamo, 1982; 
Sundermeyer, 1982; diStefano, 1983; Gotay, 1983; Kaptanoglu, 1983; Skin- 
ner and Rusk, 1983; Sugano and Kimura, 1983; Costa, Girotti, and Simoes, 
1985). 
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In this paper we construct a curved spacetime out of Cawley's (1985) 
Lagrangian and find the corresponding energy-momentum tensor, the source 
of  the curvature. In Section 2 we present our metric and write down the 
Einstein field equations corresponding to it. In Section 3 the energy- 
momentum tensor corresponding to this curved spacetime is shown to be 
that of matter. Other energy-momentum tensors are then discussed iI~ Section 
4 and shown to be unsuitable as sources to such a spacetime. The last 
section is devoted to concluding remarks. 

2. T H E  C U R V E D  S P A C E T I M E  M E T R I C  

Changing notation, and adding the appropriate term to the temporal 
component, Cawley's (1985) Lagrangian can be written in the form of the 
three-dimensional line element 

ds2= f ( x ,  y )  d t 2 -  2 dx dy (1) 

where 

f ( x ,  y )  = 1 + 2kxy  - Ay 2 (2) 

Here k is a constant, A is a parameter taking the values from -o0 to + ~ ,  
and x and y are "Cartesian" coordinates. The metric (1) has a singularity 
when f ( x ,  y )  = 0, that is, at the two hypersurfaces 

y• = [ k x •  + A )I/2]/A (3) 

Using the notation x ~ = t, x ~ = x, x ~ = y, one then has for the metric com- 
ponents 

g , , ~ =  0 - , g - ~ =  0 - ( 4 )  

-1  -1  

along with 

( _ g ) l / 2 = f a / 2 ,  g =de t  g~. (5) 

The nonvanishing components of the Christottel symbol are 

F~ = k y / f  F~ = ( k x  - A y ) / f  
(6) 

r i o  = k x  - a y ,  r~o  = k y  

The Ricci tensor is given by R ~  = R ~ ,  where R2r is the Riemann tensor 
(Carmeli, 1977) 

R~,~ = ( -g ) -~ /2 [ ( -g ) , / 2F~] ,  ~ _ [ln(-g)1/2],~,~ _ ~ F~,t3F ~ (7) 
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where  a c o m m a  denotes  par t ia l  d i f ferent ia t ion,  f ~  = Of/x  ~, a = 0, 1, 2. The 
c o m p o n e n t s  o f  the Ricci  t ensor  are then  given by 

Roo = 2k(1 + k x y ) / f  

Rol = R o 2  = 0 

R, ,  = kZyZ/ f  2 (8) 

R12 = - k (  l + kxy ) / f  2 

R22 = (• + k2x2) / f  2 

and  the Ricci  sca lar  R = g"~R.~ by 

R = 4k(1 + k x y ) / f  2 (9) 

The con t rava r i an t  Ricci  t ensor  is then  given by 

R ~176 = 2k(1 + k x y ) / f  3 

R ~ = R ~ = 0 

R "  = (A + k 2x 2 ) / f  2 (10) 

R '2 = - k ( 1  + k x y ) / f  2 

R 22 = k2y2 / f  2 

whereas  the  c o m p o n e n t s  o f  the Eins te in  t ensor  G ~ = R ~ - � 8 9  are given 
by 

G ~176 G ~ G ~  

G:'  = (A + k 2 x 2 ) / f  2 
(11) 

G 12 = k(1 + k x y ) / f  2 

G22= k2y2 / f  2 

Using the Eins te in  field equat ions ,  we then find that  the e n e r g y - m o m e n t u m  
tensor  T ~ is given by  

0 0) 
f - 2  A + k 2 y  2 k(1 + kxy) 

k(1 + kxy) k2y 2 
= KT ~ (12) 

where  x is the Einste in  grav i ta t iona l  cons tan t  (in the next  sect ions it will 
be taken  as unity) .  

In  the next  sect ion we will find the e n e r g y - m o m e n t u m  tensor  that  
p rovides  the sources for  this met r ic  and  show that  it is that  one descr ib ing  
matter .  
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3. THE MATTER ENERGY-MOMENTUM TENSOR 

In the last section we constructed a line element out of Cawley's 
Lagrangian and wrote down the Einstein field equations corresponding to 
it. As is seen from equation (12), the spacetime obtained is not empty 
(namely nonvacuum), and the question arises as to what energy-momentum 
tensor (source) this spacetime corresponds. It is worthwhile mentioning 
here that the situation is similar to those of the nonvacuum nonstationary 
Vaidya and Kerr metrics, where one has the metrics at hand and the 
corresponding energy-momentum tensors are interpreted via the Einstein 
field equations accordingly (Carmeli and Kaye, 1977; Carmeli, 1982). 

In this section we will assume that the energy-momentum tensor is that 
describing matter and is given by (Carmeli, 1982) 

T ~ = pu~u ~ +p~" (13) 

where p is the mass density, u ~ is the "four"-velocity u ~ = d x ~ / d s  of the 
individual particles, and p"" is the stress tensor (the speed of light is taken 
as unity). We now use this expression for the energy-momentum tensor in 
equation (12) and obtain 

p u ~ 1 7 6  ~176 = 0 

p u ~  ~ 
RuOu 2 + p 0 2  = 0 

(14) 
pu lu  l q_pll = (A + k 2 x 2 ) / f  2 

pulu2 + p ~2 = k(1 + k x y ) / f  2 

pu2u 2 + p~2 = k2y2/ f2  

where 

f =  1 + 2kxy  - Ay 2 (15) 

The unknown variables in (14) are, of course, the mass density p, the three 
components u ~ u 1, u 2 of the velocity, and the six components pOO, pOl, p02, 
p11, pn ,  pZ2 of the stress tensor. To these unknown variables we have the 
six equations (14), the three conservation laws (continuity equations) 

/xu 
T,v =0  (16) 

and the normalization condition u~u ~= 1. In (16) a semicolon denotes 
covariant differentiation. 

A simple calculation then shows that the conservation laws (16) give 

(17) 
/~U2U '-I-p21-t  - pyU2U2 ~-/022 = 0 

where t~x = O~/Ox, ~y = O~/Oy, etc., and 

=f~/Zp, tim, =f~/2pm,  (m, n = 1, 2) (18) 
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The third equation of (16) yields 0 - 0 .  Equations (14) and (17) and the 
condition u,~u ~ = 1 determine uniquely the ten unknown variables of the 
energy-momentum tensor up to one undetermined degree of freedom. 

In the next section we will try three other energy-momentum tensors 
as sources for our metric, all of which will be shown to be unsatisfactory. 

4. OTHER E N E R G Y - M O M E N T U M  TENSORS 

In the last section we "matched" an energy-momentum tensor to the 
metric presented in Section 2. In this section we will try other energy- 
momentum tensors. 

Let us first assume that the matter consists of a perfect fluid, namely, 
one whose pressure is isotropic. The stress tensor can then be expressed as 

p~*~ =p(u~*uV-g  ~'~) (19) 

where p is the pressure. We then have the field equations 

(p + p)u~  u ~  = 0 

( p + p ) u ~  1 = 0  

( p + p ) u ~  

( p +  p ) u '  u 1 = (A + k 2 x 2 ) / f  2 

(p + p)u~u2 + p = k(1 + k x y ) / f  2 

(20) 

which yields 

f = 0. (23) 

Thus, such an energy-momentum tensor should be excluded. 
We next try an energy-momentum tensor describing a scalar field 4~, 

Tu. = (o ,.cb.. - mZ&,.cb (24) 

(I 9 q- p ) u 2 u  2 = k 2 y 2 / f  2 

To satisfy these equations, and assuming that p r 0, one sees that both the 
pressure and u ~ should vanish, 

p =0,  u ~  (21) 

From the last three equations of (20) one then obtains the condition 

(A "Jr- k2x2)ky  2 = / (1  -~ kXy) 2 (22) 
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A simple calculation then gives the field equations 

r - m2 fbf = 0 

~,,bx = 0 

~,G = 0 
(25) 

, ~  = k 2 y 2 / f  2 

G G  + m %  = k(1 + k x y ) / f  ~ 

~2y = (A + k 2 x 2 ) / f  2 

where use has been made of the notation qSt =aq~/at, ,G =a~/ax, and 
r = O~b/Oy. In analogy to the previous case, one sees that 

m = 0, ~b, = 0 (26) 

and the field equations (25) again lead to the singularity condition (23). 
Thus, the energy-momentum tensor (24) should also be excluded. 

We will try another possibility, that the energy-momentum tensor 
describes an electromagnetic field, 

1 1 cq3 oe 
T~ : 4---~ (ag~,~F~aF - F~F~ ) 

Using the Minkowskian notation 

(27) 

F M i n k =  E x 0 ( 2 8 )  
--kay 

G - H  

where E and H are the electric and magnetic fields, we then obtain for T~  
in our coordinate system 

1 { ExEy-Hzf /2  -ExH EyH, 
T~ = - -  [ -HEx - E 2 / f  - H ' / 2  ] (29) 

4 ~ \  HEy -H2/2  H2-E2y/ f]  

Using the field equations, we again obtain contradictions, and thus the 
electromagnetic field tensor should also be excluded. 

Hence the source of the metric (1) cannot be a perfect fluid, a scalar 
field, or an electromagnetic field. 

5. C O N C L U D I N G  R E M A R K S  

We conclude from the analyses of Sections 3 and 4 that the appropriate 
energy-momentum tensor to the metric presented in Section 2 is that describ- 
ing matter, and that the standard energy-momentum tensors representing 
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a perfect  fluid, a K l e i n - G o r d o n  field, or  an e lec t romagne t i c  field canno t  be 
the  source  for  such a space t ime.  As has been  po in t e d  out  before ,  our  analysis  
is s imi lar  to those  used  for  the  nons t a t i ona ry  n o n v a c u u m  Vaidya  and  Ker r  
metrics.  However ,  while  in the Va idya  and  the nons ta t iona ry  Ker r  metr ics  
the  sources  are obv ious ly  rad ia t ive  fields, the source  here is jus t  mat ter .  
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